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Hypothese

Dans tout ce chapitre, n, p,q,r € N* et le corps K désigne R ou C.

1 Définitions et notations

| Définition 21.1 |

On appelle systeme linéaire de n équations a p inconnues un systeme d’équations de la forme

ayxy+apx+...+ajpx, =b
aznxy+axpxy+...+apx, = by

am X1 +apXxo+ ...+ appxpy = b,

ol (a;j) 1<i<n €t (b;)1<i<n sont des familles d’éléments de K (tous fixés : leur valeur est connue).

—

1<j<p

Les valeurs xy,xs, - - ,x, € K sont les inconnues du systeme ().

Les valeurs g;; sont les coefficients du systeme (.7).

Les valeurs by, - - , b, sont appelés les seconds membres du systeme ().

Sib; =--- =b, =0, ondit que (.¥) est un systtme homogeéne ou sans second membre.
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On appelle systeme homogene associé a () le systéme obtenu en annulant les seconds membres de
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Systémes linéaires

(.), cad:
anxi+apxy+...+appx, =0
() :
an1 X1 + X2 + ...+ appxy =0

Exemple 1. Les systémes suivants sont linéaires :

2xtoy=0 2y+3z—4t=0 ix =1

X — Z— = X =
(Z1):{6x+3y=1 () : Y (A): )
=5 x+y+z+t=0 —Xx=1i

Parmi ces systémes, les systemes homogenes est (sont) le(s) systeme(s)

Exemple 2. Les systemes suivants ne sont PAS linéaires (méme si (.%%) est équivalent a un systeme linéaire) :

_ 22— 2=
(y4):{2x+5y—4z (5’5)2{ +y =0 (5%):{ 0

xy=1 x+iz=2 y=
Théoréme 21.2 |
En reprenant les notations de la Définition 21.1, en posant
X1 by
A= (a,'j) € Mmp(K) X = € Mp,l(K) B = € Mm](K)
Xp b,
Alors (x1,--- ,xp) est solution de () si et seulement si AX = B.

L'équation matricielle AX = B est appelée écriture matricielle du systeme (.#). La matrice A est appelée la
matrice du systeme (). Par extension, on dira souvent qu'une équation matricielle AX = B est un systéme
linéaire. Il y a autant d’équations que de lignes pour les matrices A et B. Il y a autant d'inconnues que de colonnes
dans la matrice A et de lignes dans la matrice X.

x+3y+4z =0
Exemple 3. Le systeme linéaire { 5 3y ¢ ) se réécrit sous forme matricielle :
—2X — y f—

De plus, on peut omettre le vecteur X et réécrire le systeme AX = B au moyen d'une matrice augmentée (A ‘ B) :

1 2 3|7
Exemple 4. Lesysteme | 0 4 5| 9 correspond au systéme
0 0 6|12
1 2 3 x 7 x+2y+3z=7
0 45 y | =1 9 ou encore 4y+5z=9
0 0 6 z 12 6z =12

Les inconnues ont été notées arbitrairement x, y, z. On aurait pu choisir x, x2,x3, ou encore u, v, w, etc.
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Systémes linéaires

2 Structure de I'ensemble des solutions

Notation. On note S et Sy les ensembles des solutions des systemes (.) et (.#)) respectivement.
X1

Remarque. SiX = : € M, 1(K), on identifie la matrice (colonne) X avec le p-uplet (xi,---,x,) de K”.
Xp

Ainsi les ensembles de solutions (S) et (Sp) peuvent s’écrire de deux fagons :

apxytapxy+...+tapx, = by

anxi+apx+...+aypx, =b
S={XeM,(K)|AX=B} = < (x,,x,) €K’
a1 X1 +apaXy + ...+ anpXp = by
So= {X e M, 1(K) |AX = On,l} = ... (idem que ci-dessus avec by = ... = b, =0)

Définition 21.3 I_

Un systeme linéaire () est dit compatible s’'il admet au moins une solution, i.e. si S # @.
Il est dit incompatible s’il n”’admet pas de solution, i.e. si S = &.

x=0
Exemple 5. Le systeme linéaire { | est incompatible: S = @.
X =

Exemple 6. Un systéme homogene est toujours compatible : en effet AX = 0, admet pour solution X =0, 1, si
bien que Sy # 2.

Théoréme 21.4 |

Si Xpart st une solution (particuliere) de (.#), cad Xparc € S, alors
S = {xpan+z 1Ze SO} = Xpart+ So

Autrement dit X € S sietseulementsi 3Z € S, X = Xpart +Z.

Démonstration.

XeY < AX=B

= AX = AXpart

— A(X —Xpart) =0

— X —Xpan €Sy

< ZecS X-—Xpar=Z2

< ZeS X=Xpan+Z

O

Le théoréme ci-dessus a en réalité un faible intérét pratique. Pour trouver toutes les solutions de (.#), plutot que

de déterminer (Sp) et Xpari, on procédera plutdt par équivalences, en résolvant non pas (.#’) mais un systéme
(") plus simple et qui lui est équivalent, cf section suivante.
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Systémes linéaires

3 Opération élémentaire et matrice échelonnée

| Définition 21.5 |

1
Un systéme linéaire () est équivalent & un systéme linéaire (.#”) si les systemes (.%) et (.#’) ontles |
mémes ensembles de solution. .

La méthode du pivot de Gauss consiste a effectuer des opérations (dites élémentaires) sur un systeme (.’) afin
de se ramener a un systeme (.#’) plus simple qui est équivalent a (.%).

Définition 21.6 — Opération élémentaire

Soit (.’) un systeme linéaire dont on note Ly, - - -, L, les lignes correspondant a chaque équation. On
appelle opération élémentaire une de ces trois opérations sur les lignes de (-*) :

e Dilatation : on multiplie une ligne L; par un élément u € K*:| L; < uL; |

e Permutation : on échange deuxlignes L; et L; :| L; <> L;

e Transvection : on ajoute a L; une autre ligne L; (i # j) multipliée par A € K:| L; < L;+AL;

Théoreme 21.7 |

Etant donné un systeme (.%), si un systeme (.#’) est obtenu par des opérations élémentaires sur (),
alors (.) et () sont équivalents.

Démonstration. Admis pour le moment, mais le principe est que chaque opération est “réversible” et permet de
“revenir en arriére” : 'opération inverse de L; <— uL; est L; <— ,u_lL,-, I'opération inverse de L; <+ L; est L; <+ L, et

I'opération inversede L; <— L;+ALjestL; <~ L; — AL;. O
3x—2z=95

Exemple 7. Résoudre { x—y+z=7
x+y+z=3
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Systémes linéaires

Définition 21.8 |

SoitA € M, ,(K). On dit que A est une matrice échelonnée si pour chaque ligne L; (aveci € [1,n]) :

e Oubien L; est une ligne remplie de zéros.

coefficient non nul de L;_; (aveci > 2)

Dans ce cas, le premier coefficient non nul de chaque ligne est appelé un pivot de la matrice A.

1
e Ou bien le premier coefficient non nul de L; se trouve strictement plus a droite que le premier !
|
1

Dit autrement, une matrice A est échelonnée, lorsque chaque ligne non nulle commence avec davantage de
zéros que la ligne précédente.

Exemple 8. Les matrices suivantes sont échelonnées (les pivots ont été encadrés) :

s 4 3 4 0 1 4 0 1
. ; 0o 6l s 0 0 0 0 -5
0 0 0 00 0 o [i] o
o o [
0 0 0 00 0 0 0 O
Exemple 9. Les matrices suivantes sont-elles échelonnées ?
1 3 4 2 0 25 03 00 9
Ai=10 2 3 Ab=10 0 0 O Az=| 0 0 x 5 -1 avecx € C
010 0 0 45 00 x 0 O

4 Algorithme du pivot de Gauss
Etant donné un systéme linéaire AX = B, on considére sa matrice augmentée :

ajp - ayp | by

(4]s)-

ap1 -+ dpp by,

Pour résoudre AX = B, I'algorithme du pivot de Gauss consiste a effectuer des opérations élémentaires sur les
lignes de la matrice augmentée (ce qui affecte également les coefficients by, - - - ,b,) de facon a se ramener a une
matrice échelonnée a gauche de la barre (et modifera B en une matrice By) :

(A’B) ~> (Aech BO) aveC Agey, €chelonnée
op. élém.

Lorsque la matrice est échelonnée, le systeme devient beaucoup plus facile a résoudre.

Au cours de I'algorithme, on appelera sous-matrice une partie rectangulaire de la matrice augmentée (donc en
incluant B) sur laquelle on applique I'algorithme. Cette sous-matrice verra petit a petit sa taille diminuer.
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Systémes linéaires

Méthode - Algorithme du pivot de Gauss

Initialement, on prend comme sous-matrice toute la matrice augmentée (B inclus).
1. Selon la premiere colonne de la sous-matrice, on applique les étapes 2, 2bis ou 2ter.

2. Cas a;; # 0 : pivot en haut a gauche. Si a;; # 0 : on 'encadre. Ce sera un pivot de la matrice
lorsqu’elle sera échelonnée. Puis, par des transvections, on fait apparaitre des 0 sous| ap;

ain | aiz -+ aip | by air | arz - app by a1
ay  ay - ay | b2 0 Ly FLz—ELl
* .
an o dnp | Do 0 /) Lern,-9
ap

3. Rétrécissement de la sous-matrice. On recommence |'algorithme a 1'étape 1 en excluant la premiére
B ) ci-dessous :

colonne et la premiere ligne, donc avec la sous-matrice (A’

0 & 0

. /
: * : : A’ B
0 & 0

2bis. Cas oii toute la premiere colonne est nulle. Si toute la premiére colonne est nulle, on recommence
B’) ci-

I'algorithme a I’étape 1 en excluant cette colonne nulle, donc avec la sous-matrice (A’

dessous :
0 * 0

: : /
: * : ~ : A B
0 * 0
2ter. Casoita;; = 0 mais la premiere colonne n'est pas nulle. Si a;; = 0 mais que la premiere colonne

contient un terme non nul, on en choisit un arbitrairement : si on choisit a;; # 0 (avec k > 2), on le
met en premiére ligne avec la permutation Ly <+ L :

0 an - ap | b ari | ara - arp | by
021 b2 a21 b2
: — .
Akl akp - arp | by 0 apy - aip by Ly L
anl by anl by

Comme ay; # 0, on est ramené a la situation de I’étape 2 et on reprend 1’algorithme a cette étape.

On continue 'algorithme jusqu’a ce que la sous-matrice n’ait plus de colonne a gauche de la barre
verticale. On obtient alors une matrice échelonnée a gauche de cette barre :

(A]B) ~> (Accn|Bo)

op. élém.

et By une matrice a priori différente de B.
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Une fois la matrice échelonnée, on peut repasser en écriture “systeme d’équations”. Comme on a réalisé unique-
ment des opérations élémentaires, le systéme initial est équivalent au nouveau systeéme et ce dernier est bien
plus facile a résoudre.

x+ y+2z=3
Exemple 10. Résoudre ¢ x+2y+ z=1
2x+ y+ z=0

Lexemple ci-dessus est simple car les cas 2bis et 2ter de I'algorithme n’arrivent jamais. De plus, il y a autant
de pivots que d’inconnues, donc on obtient un systéme “triangulaire” qui conduit a une unique solution. Les
exemples suivants seront plus exotiques. Dans un premier temps, on se contentera d’appliquer I'algorithme du
pivot, puis dans la section suivante on reprendra ces exemples pour achever leur résolution.

—9z+ 8t =4
Exemple 11. Résoudre: ¢ 3x—6y+4t =7
x—2y+z =1



Exemple 12. Déterminer le ou les valeurs du réel m pour lesquelles le systeme suivant admet au moins une

Ix+7y=2m—1
—6x—9y=-2
solution puis le résoudre : oy "
x—2y=-1
3x—6y=m
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Systémes linéaires

5 Résolution d’'un systéme apres échelonnement

Méthode — Résolution apres échelonnement

On dispose d'un systéme mis sous forme échelonnée : (Aech | Bo).

1. On encadre chaque pivot de Aech. Les variables qui correspondent a ces colonnes sont appelées des
variables pivots. Les autres sont appelées des variables libres.

2. Onréécrit 'équation matricielle sous la forme d’un systéeme.

.

3. Les lignes sans pivot donnent des équations dites de “compatibilités
forme “0 = B;”, ou B; € K.

e Le systeme sera compatible si et seulement si chacun de ces 3; est nul. Alors, ces équations
deviennent 0 = 0 et peuvent étre ignorées.

. Ces équations sont de la

4. Les lignes avec pivot donnent des équations qu’on résout usuellement “de bas en haut” : chaque
variable pivot doit étre isolée et exprimée en fonctions des variables libres et/ou des seconds
membres.

5. Lensemble S des solutions correspond aux p-uplets (x1,x2,--- ,x,) de K” oi1 les variables pivots
vérifient une équation, tandis que les variables libres prennent des valeurs quelconques dans K.

Exemple 13. Voici un exemple typique de systéme échelonné :

4 —1 |o
o 0 |-3]|]|3
0 0 0 a
o 0o o |b

Ici, il y a 3 variables (inconnues), qu’on peut noter par exemple x,y, z. Les variables x et z sont des variables pivots,
tandis que y est une variable libre. En repassant en mode systéme, on obtient :



Exemple 14. Terminer la résolution des systemes de la section précédente.

6 Calcul delinverse d'une matrice par la méthode du pivot

Dans cette section, on va considérer une matrice augmentée d'un autre type : il y aura une matrice carrée a
gauche comme a droite de la barre verticale.

Méthode - Calcul de I'inverse par le pivot de Gauss

Soit A € M,,(K). On cherche a vérifier si A est inversible et, si c’est le cas, a calculer A~!. On construit
d’abord une matrice augmentée :
(A1)

Puis, par des opérations élémentaires sur les lignes on échelonne la matrice A, a gauche de la barre.

o Sidans la matrice échelonnée il y a moins de n pivots, alors A n’est pas inversible : on peut s’arréter
la.

e Sidans la matrice échelonnée il y a n pivots, cad qu’on obtient une matrice augmentée de la forme
:
g

alors A est inversible. On se rameéne alors par des opérations élémentaires a
!/
(I | A7)

et dans ce cas, A’ = A~! est la matrice inverse recherchée.

2 6 4
Exemple 15. VérifiersiA = 1 7 0 est inversible et si c’est le cas, calculer A"
-3 3 -10



Exemple 16. Vérifier siA = est inversible et si C’est le cas, calculer A~!.

—
—
—_—
—_—

Théoréeme 21.9 - Inversibilité des matrices diagonales

Soit D = diag(a,--- , o) avec o, - - - , &, € K. Alors D € GL,(K) si et seulement si ¢, - - , &, sont tous
non nuls. De plus, lorsque c’est le cas :

o 0

D=
O o, !
Heuristique de la preuve. Silesréels ay,-- -, @, sont tous non nuls, on vérifie par un calcul direct que la matrice
. I 1 1 o
diag( —,—,---,— | estbienl'inverse de D.
o o ®y
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Systémes linéaires

Réciproquement, si un des coefficients a4, - - , &, est nul, on montrera grace au déterminant dans un chapitre
ultérieur que D n’est pas inversible. O

Théoréeme 21.10 — Inversibilité de matrices triangulaires

Soit T € 7,7 (K), qu'on écrit sous la forme

Bi *
B>

T = . avec fBi,---,B, €K
0 B,
Alors T € GL,(K) si et seulement si les réels i, - - , B, sont tous non nuls et dans ce cas, T 'estdela
forme
/
o x
—1
L B

0 B!

Ce théoreme s’adapte aussi aux matrices triangulaires inférieures.

!/ — 2 N
Q Les termes ' dans 7~ ' ne sont pas forcément les mémes que les termes * dans 7.

Heuristique de la preuve. Si les réels B, - -, B, sont tous non nuls, alors la matrice 7 est déja échelonnée et
possede n pivots B, -, B,. Elle est donc inversible. En réalisant 'algorithme pour inverser 7, i.e. passer de
(T | 1,) a (I, | T~") par des opérations élémentaires, on constate que la matrice 7~ ' obtenue doit vérifier la forme
ci-dessus.

Réciproquement, si un des coefficients i, - - - , B, est nul, on montrera grace au déterminant dans un chapitre
ultérieur que T n’est pas inversible. O
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7 Méthodes pour les exercices

| Méthode |

Pour résoudre un systeme linéaire, on peut :

o Si le systéeme est de petite taille (2x2 par exemple) rester en écriture “systeme” et procéder par
substitution ou combinaison.

o Sile systeme est de grande taille, passer en écriture matricielle et appliquer ’algorithme du pivot au
préalable.

| Méthode |

Pour vérifier si une matrice A € M,,(R) est inversible ou non et calculer Al (siA est inversible), on peut :

e Chercher une matrice B € M,(R) telle que AB =1, ou BA = I,.
e Partir d'une matrice augmentée (A | I,) et échelonner A par des opérations sur les lignes.

- Si apres échelonnement, A ne posséde pas n pivots, alors A n’est pas inversible.

— Si apres échelonnement, A possede n pivots, alors A est inversible : on se ramene a la forme
(I, | A"), et A’ est alors la matrice inverse de A.

On verra d’autres méthodes pour vérifier plus rapidement si une matrice est inversible ou non, mais en général,
elles ne permettent pas de calculer A~'.
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