
Chapitre 21

Systèmes linéaires

Plan du chapitre

1 Définitions et notations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

2 Structure de l’ensemble des solutions . . . . . . . . . . . . . . . . . . . . . . . . 3

3 Opération élémentaire et matrice échelonnée . . . . . . . . . . . . . . . . . . . . . 4

4 Algorithme du pivot de Gauss . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

5 Résolution d’un système après échelonnement . . . . . . . . . . . . . . . . . . . . 9

6 Calcul de l’inverse d’une matrice par la méthode du pivot . . . . . . . . . . . . . . . . 10

7 Méthodes pour les exercices. . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

Hypothèse

Dans tout ce chapitre, n, p,q,r ∈ N∗ et le corps K désigne R ou C.

1 Définitions et notations

Définition 21.1

On appelle système linéaire de n équations à p inconnues un système d’équations de la forme

(S ) :


a11x1 +a12x2 + . . .+a1pxp = b1

a21x1 +a22x2 + . . .+a2pxp = b2
...

...

an1x1 +an2x2 + . . .+anpxp = bn

où (ai j)1≤i≤n
1≤ j≤p

et (bi)1≤i≤n sont des familles d’éléments de K (tous fixés : leur valeur est connue).

• Les valeurs x1,x2, · · · ,xp ∈K sont les inconnues du système (S ).

• Les valeurs ai j sont les coefficients du système (S ).

• Les valeurs b1, · · · ,bn sont appelés les seconds membres du système (S ).

• Si b1 = · · ·= bn = 0, on dit que (S ) est un système homogène ou sans second membre.

• On appelle système homogène associé à (S ) le système obtenu en annulant les seconds membres de
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Systèmes linéaires

(S ), càd :

(S0) :


a11x1 +a12x2 + . . .+a1pxp = 0

...
...

an1x1 +an2x2 + . . .+anpxp = 0

Exemple 1. Les systèmes suivants sont linéaires :

(S1) :


2x+6y = 0
6x+3y = 1

2y = 5

(S2) :

{
x−2y+3z−4t = 0
x+ y+ z+ t = 0

(S3) :

{
ix = 1
−x = i

Parmi ces systèmes, les systèmes homogènes est (sont) le(s) système(s) .......

Exemple 2. Les systèmes suivants ne sont PAS linéaires (même si (S6) est équivalent à un système linéaire) :

(S4) :

{
2x+5y = 4z
xy = 1

(S5) :

{
x2 + y2 = 0
x+ iz = 2

(S6) :

{
x2 = 0
y = 3

Théorème 21.2

En reprenant les notations de la Définition 21.1, en posant

A = (ai j) ∈Mn,p(K) X =

 x1
...

xp

 ∈Mp,1(K) B =

 b1
...

bn

 ∈Mn,1(K)

Alors (x1, · · · ,xp) est solution de (S ) si et seulement si AX = B.

L’équation matricielle AX = B est appelée écriture matricielle du système (S ). La matrice A est appelée la
matrice du système (S ). Par extension, on dira souvent qu’une équation matricielle AX = B est un système
linéaire. Il y a autant d’équations que de lignes pour les matrices A et B. Il y a autant d’inconnues que de colonnes
dans la matrice A et de lignes dans la matrice X .

Exemple 3. Le système linéaire

{
x+3y+4z = 0

−2x−3y = 1
se réécrit sous forme matricielle :

(
1 3 4
−2 −3 0

) x
y
z

=

(
0
1

)
De plus, on peut omettre le vecteur X et réécrire le système AX = B au moyen d’une matrice augmentée

(
A
∣∣∣B

)
:

Exemple 4. Le système

 1 2 3
0 4 5
0 0 6

∣∣∣∣∣∣
7
9

12

 correspond au système

 1 2 3
0 4 5
0 0 6

 x
y
z

=

 7
9

12

 ou encore


x+2y+3z = 7

4y+5z = 9
6z = 12

Les inconnues ont été notées arbitrairement x,y,z. On aurait pu choisir x1,x2,x3, ou encore u,v,w, etc.
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2 Structure de l’ensemble des solutions

Notation. On note S et S0 les ensembles des solutions des systèmes (S ) et (S0) respectivement.

Remarque. Si X =

 x1
...

xp

 ∈Mp,1(K), on identifie la matrice (colonne) X avec le p-uplet (x1, · · · ,xp) de Kp.

Ainsi les ensembles de solutions (S) et (S0) peuvent s’écrire de deux façons :

S =
{

X ∈Mp,1(K)
∣∣ AX = B

}
=

(x1, · · · ,xp) ∈Kp

∣∣∣∣∣∣∣∣∣∣


a11x1 +a12x2 + . . .+a1pxp = b1

a21x1 +a22x2 + . . .+a2pxp = b2
...

...

an1x1 +an2x2 + . . .+anpxp = bn


S0 =

{
X ∈Mp,1(K) | AX = 0n,1

}
= . . . . . . (idem que ci-dessus avec b1 = . . .= bn = 0)

Définition 21.3

Un système linéaire (S ) est dit compatible s’il admet au moins une solution, i.e. si S ̸=∅.
Il est dit incompatible s’il n’admet pas de solution, i.e. si S =∅.

Exemple 5. Le système linéaire

{
x = 0
x = 1

est incompatible : S =∅.

Exemple 6. Un système homogène est toujours compatible : en effet AX = 0n,1 admet pour solution X = 0p,1, si
bien que S0 ̸=∅.

Théorème 21.4

Si Xpart est une solution (particulière) de (S ), càd Xpart ∈ S , alors

S =
{

Xpart +Z | Z ∈ S0

}
= Xpart +S0

Autrement dit X ∈ S si et seulement si ∃Z ∈ S0 X = Xpart +Z.

Démonstration.

X ∈S ⇐⇒ AX = B

⇐⇒ AX = AXpart

⇐⇒ A(X−Xpart) = 0

⇐⇒ X−Xpart ∈ S0

⇐⇒ ∃Z ∈ S0 X−Xpart = Z

⇐⇒ ∃Z ∈ S0 X = Xpart +Z

Le théorème ci-dessus a en réalité un faible intérêt pratique. Pour trouver toutes les solutions de (S ), plutôt que
de déterminer (S0) et Xpart, on procédera plutôt par équivalences, en résolvant non pas (S ) mais un système
(S ′) plus simple et qui lui est équivalent, cf section suivante.
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3 Opération élémentaire et matrice échelonnée

Définition 21.5

Un système linéaire (S ) est équivalent à un système linéaire (S ′) si les systèmes (S ) et (S ′) ont les
mêmes ensembles de solution.

La méthode du pivot de Gauss consiste à effectuer des opérations (dites élémentaires) sur un système (S ) afin
de se ramener à un système (S ′) plus simple qui est équivalent à (S ).

Définition 21.6 – Opération élémentaire

Soit (S ) un système linéaire dont on note L1, · · · ,Ln les lignes correspondant à chaque équation. On
appelle opération élémentaire une de ces trois opérations sur les lignes de (S ) :

• Dilatation : on multiplie une ligne Li par un élément µ ∈K∗ : Li← µLi .

• Permutation : on échange deux lignes Li et L j : Li↔ L j

• Transvection : on ajoute à Li une autre ligne L j (i ̸= j) multipliée par λ ∈K : Li← Li +λL j

Théorème 21.7

Étant donné un système (S ), si un système (S ′) est obtenu par des opérations élémentaires sur (S ),
alors (S ) et (S ′) sont équivalents.

Démonstration. Admis pour le moment, mais le principe est que chaque opération est “réversible” et permet de
“revenir en arrière” : l’opération inverse de Li← µLi est Li← µ

−1Li, l’opération inverse de Li↔ L j est Li↔ L j, et
l’opération inverse de Li← Li +λL j est Li← Li−λL j.

Exemple 7. Résoudre


3x−2z = 5
x− y+ z = 7
x+ y+ z = 3

x+ y+ z = 3 (L1↔ L3)

x− y+ z = 7
3x−2z = 5


2y =−4 L1← L1−L2

x− y+ z = 7
3x−2z = 5


y =−2 (L1←

1
2

L1)

x+2+ z = 7
3x−2z = 5

y =−2
x+ z = 5
3x−2z = 5


y =−2
x+ z = 5
5x = 15 L3 +2L2


y =−2
x = 3 (L2↔ L3)

3+ z = 5


y =−2
x = 3
z = 2

Ainsi, S = {(3,−2,2)}.
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Définition 21.8

Soit A ∈Mn,p(K). On dit que A est une matrice échelonnée si pour chaque ligne Li (avec i ∈ J1,nK) :

• Ou bien Li est une ligne remplie de zéros.

• Ou bien le premier coefficient non nul de Li se trouve strictement plus à droite que le premier
coefficient non nul de Li−1 (avec i≥ 2)

Dans ce cas, le premier coefficient non nul de chaque ligne est appelé un pivot de la matrice A.

Dit autrement, une matrice A est échelonnée, lorsque chaque ligne non nulle commence avec davantage de
zéros que la ligne précédente.

Exemple 8. Les matrices suivantes sont échelonnées (les pivots ont été encadrés) :


1 3 4

0 2 3

0 0 i




2 3 4

0 −6 5
0 0 0
0 0 0




0 3 1 4 0 1

0 0 0 5 0 −5

0 0 0 0 i 0
0 0 0 0 0 0


Exemple 9. Les matrices suivantes sont-elles échelonnées ?

A1 =

 1 3 4
0 2 3
0 1 0

 A2 =

 2 0 2 5
0 0 0 0
0 0 4 5

 A3 =

 0 3 0 0 9
0 0 x 5 −1
0 0 x 0 0

 avec x ∈ C

4 Algorithme du pivot de Gauss

Étant donné un système linéaire AX = B, on considère sa matrice augmentée :

(
A
∣∣∣B

)
=

 a11 · · · a1p
...

...
an1 · · · anp

∣∣∣∣∣∣∣
b1
...

bn


Pour résoudre AX = B, l’algorithme du pivot de Gauss consiste à effectuer des opérations élémentaires sur les
lignes de la matrice augmentée (ce qui affecte également les coefficients b1, · · · ,bn) de façon à se ramener à une
matrice échelonnée à gauche de la barre (et modifera B en une matrice B0) :

(
A
∣∣∣B

)
⇝

op. élém.

(
Aech

∣∣∣B0

)
avec Aech échelonnée

Lorsque la matrice est échelonnée, le système devient beaucoup plus facile à résoudre.

Au cours de l’algorithme, on appelera sous-matrice une partie rectangulaire de la matrice augmentée (donc en
incluant B) sur laquelle on applique l’algorithme. Cette sous-matrice verra petit à petit sa taille diminuer.
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Méthode – Algorithme du pivot de Gauss

Initialement, on prend comme sous-matrice toute la matrice augmentée (B inclus).

1. Selon la première colonne de la sous-matrice, on applique les étapes 2, 2bis ou 2ter.

2. Cas a11 ̸= 0 : pivot en haut à gauche. Si a11 ̸= 0 : on l’encadre. Ce sera un pivot de la matrice
lorsqu’elle sera échelonnée. Puis, par des transvections, on fait apparaitre des 0 sous a11 :


a11 a12 · · · a1p

a21 a22 · · · a2p
...

...
...

an1 an2 · · · anp

∣∣∣∣∣∣∣∣∣
b1
b2
...

bn




a11 a12 · · · a1p

0
... ∗
0

∣∣∣∣∣∣∣
b1

...


L2← L2−

a21

a11
L1

...

Ln← Ln−
an1

a11
L1

3. Rétrécissement de la sous-matrice. On recommence l’algorithme à l’étape 1 en excluant la première

colonne et la première ligne, donc avec la sous-matrice
(

A′
∣∣∣B′

)
ci-dessous :

a11 a12 · · · a1p

0
... ∗
0

∣∣∣∣∣∣∣∣∣
b1
∗
...
∗

 ⇝


a11 a12 · · · a1p

0
... A′
0

∣∣∣∣∣∣∣∣
b1

B′


2bis. Cas où toute la première colonne est nulle. Si toute la première colonne est nulle, on recommence

l’algorithme à l’étape 1 en excluant cette colonne nulle, donc avec la sous-matrice
(

A′
∣∣∣B′

)
ci-

dessous :  0
... ∗
0

∣∣∣∣∣∣∣
∗
...
∗

 ⇝

 0
... A′
0

∣∣∣∣∣∣ B′


2ter. Cas où a11 = 0 mais la première colonne n’est pas nulle. Si a11 = 0 mais que la première colonne
contient un terme non nul, on en choisit un arbitrairement : si on choisit ak1 ̸= 0 (avec k ≥ 2), on le
met en première ligne avec la permutation Lk↔ L1 :

0 a12 · · · a1p

a21
...

ak1 ak2 · · · akp

...
an1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

b1
b2
...

bk
...

bn


⇝



ak1 ak2 · · · akp

a21
...
0 a12 · · · a1p
...

an1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

bk
b2
...

b1
...

bn


L1↔ Lk

Comme ak1 ̸= 0, on est ramené à la situation de l’étape 2 et on reprend l’algorithme à cette étape.

On continue l’algorithme jusqu’à ce que la sous-matrice n’ait plus de colonne à gauche de la barre
verticale. On obtient alors une matrice échelonnée à gauche de cette barre :

(A | B) ⇝
op. élém.

(Aech | B0)

et B0 une matrice a priori différente de B.
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Une fois la matrice échelonnée, on peut repasser en écriture “système d’équations”. Comme on a réalisé unique-
ment des opérations élémentaires, le système initial est équivalent au nouveau système et ce dernier est bien
plus facile à résoudre.

Exemple 10. Résoudre


x+ y+2z = 3
x+2y+ z = 1

2x+ y+ z = 0
La matrice augmentée associée est 1 1 2

1 2 1
2 1 1

∣∣∣∣∣∣
3
1
0


 1 1 2

0 1 −1
0 −1 −3

∣∣∣∣∣∣
3
−2
−6

 L2← L2−L1
L3← L3−2L1 1 1 2

0 1 −1
0 0 −4

∣∣∣∣∣∣
3
−2
−8


L3← L3 +L2

En repassant au système, on obtient donc
x+ y+2z = 3

y− z =−2
−4z =−8


z = 2
y−2 =−2
x+ y+4 = 3


z = 2
y = 0
x =−1

Ainsi, S = {(−1,0,2)}.
L’exemple ci-dessus est simple car les cas 2bis et 2ter de l’algorithme n’arrivent jamais. De plus, il y a autant
de pivots que d’inconnues, donc on obtient un système “triangulaire” qui conduit à une unique solution. Les
exemples suivants seront plus exotiques. Dans un premier temps, on se contentera d’appliquer l’algorithme du
pivot, puis dans la section suivante on reprendra ces exemples pour achever leur résolution.

Exemple 11. Résoudre :


−9z+8t = 4
3x−6y+4t = 7
x−2y+ z = 1 0 0 −9 8

3 −6 0 4
1 −2 1 0

∣∣∣∣∣∣
4
7
1

 1 −2 1 0
3 −6 0 4
0 0 −9 8

∣∣∣∣∣∣
1
7
4

 L1↔ L2
 1 −2 1 0

0 0 −3 4
0 0 −9 8

∣∣∣∣∣∣
1
4
4

 L1−3L2

x y z t
1 −2 1 0

0 0 −3 4

0 0 0 −4

∣∣∣∣∣∣∣∣
7
4

16

 L3 +3L2

variables pivots : x,z, t
variable libre : y
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
x−2y+ z = 7

−3z+4t = 4
−4t = 16


t =−4
−3z = 20
x−2y+ z = 7


t =−4

z =−20
3

x = 2y+
41
3

Ainsi,

S =

{
(x,y,z, t)

∣∣∣ x = 2y+
41
3
, z =

−20
3

, t =−4, y ∈ R
}

=

{(
2y+

41
3
,y,−20

3
,−4

) ∣∣∣ y ∈ R
}

Exemple 12. Déterminer le ou les valeurs du réel m pour lesquelles le système suivant admet au moins une

solution puis le résoudre :


7x+7y = 2m−1
−6x−9y =−2m
x−2y =−1
3x−6y = m

7 7
−6 −9
1 −2
3 −6

∣∣∣∣∣∣∣∣
2m−1
−2m
−1
m




1 −2
−6 −9
7 7
3 −6

∣∣∣∣∣∣∣∣
−1
−2m

2m−1
m


L1↔ L3


1 −2
0 −21
0 21
0 0

∣∣∣∣∣∣∣∣
−1

−2m−6
2m+6
m+3

 L2 +6L1
L3−7L1
L4−3L1


1 −2
0 −21
0 0
0 0

∣∣∣∣∣∣∣∣
−1

−2m−6
0

m+3

 L3 +L2

La matrice est échelonnée. En repassant en mode système, on obtient :
x+−2y =−1
−21y =−2m−6
0 = 0
0 = m+3

◦ Si m ̸=−3, alors m+3 ̸= 0 et le système n’a pas de solution : S =∅.

◦ Si m =−3, alors (les deux dernières équations donnent 0 = 0) et le système se
réécrit : {

x+−2y =−1
−21y = 0

{
y = 0
x =−1

Ainsi, S = {(−1,0)}.
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5 Résolution d’un système après échelonnement

Méthode – Résolution après échelonnement

On dispose d’un système mis sous forme échelonnée : (Aech | B0).

1. On encadre chaque pivot de Aech. Les variables qui correspondent à ces colonnes sont appelées des
variables pivots. Les autres sont appelées des variables libres.

2. On réécrit l’équation matricielle sous la forme d’un système.

3. Les lignes sans pivot donnent des équations dites de “compatibilités”. Ces équations sont de la
forme “0 = βi”, où βi ∈K.

• Le système sera compatible si et seulement si chacun de ces βi est nul. Alors, ces équations
deviennent 0 = 0 et peuvent être ignorées.

4. Les lignes avec pivot donnent des équations qu’on résout usuellement “de bas en haut” : chaque
variable pivot doit être isolée et exprimée en fonctions des variables libres et/ou des seconds
membres.

5. L’ensemble S des solutions correspond aux p-uplets (x1,x2, · · · ,xp) de Kp où les variables pivots
vérifient une équation, tandis que les variables libres prennent des valeurs quelconques dans K.

Exemple 13. Voici un exemple typique de système échelonné :


5 4 −1

0 0 −3
0 0 0
0 0 0

∣∣∣∣∣∣∣∣
2
3
a
b


Ici, il y a 3 variables (inconnues), qu’on peut noter par exemple x,y,z. Les variables x et z sont des variables pivots,
tandis que y est une variable libre. En repassant en mode système, on obtient :


5x+4y− z = 2
−3z = 3
0 = a

0 = b

Si a ̸= 0 ou b ̸= 0, ce système n’admet pas de solution. Par contre si a = b = 0, le
système devient :

{
z =−1
5x =−4y+(−1)−2

z =−1

x =−4
5

y− 3
5
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Ainsi,

S =

{
(x,y,z) ∈ R3

∣∣∣ x =−4
5

y− 3
5
, z =−1, y ∈ R

}
=

{(
−4

5
y− 3

5
,y,−1

) ∣∣∣ y ∈ R
}

Exemple 14. Terminer la résolution des systèmes de la section précédente.

6 Calcul de l’inverse d’une matrice par la méthode du pivot

Dans cette section, on va considérer une matrice augmentée d’un autre type : il y aura une matrice carrée à
gauche comme à droite de la barre verticale.

Méthode – Calcul de l’inverse par le pivot de Gauss

Soit A ∈Mn(K). On cherche à vérifier si A est inversible et, si c’est le cas, à calculer A−1. On construit
d’abord une matrice augmentée :

(A | In)

Puis, par des opérations élémentaires sur les lignes on échelonne la matrice A, à gauche de la barre.

• Si dans la matrice échelonnée il y a moins de n pivots, alors A n’est pas inversible : on peut s’arrêter
là.

• Si dans la matrice échelonnée il y a n pivots, càd qu’on obtient une matrice augmentée de la forme
∗ ∗

. . .

0 ∗

∣∣∣∣∣∣∣∣ ∗


alors A est inversible. On se ramène alors par des opérations élémentaires à

(In | A′)

et dans ce cas, A′ = A−1 est la matrice inverse recherchée.

Exemple 15. Vérifier si A =

 2 6 4
1 7 0
−3 3 −10

 est inversible et si c’est le cas, calculer A−1. 2 6 4
1 7 0
−3 3 −10

∣∣∣∣∣∣
1

1
1


 1 7 0

2 6 4
−3 3 −10

∣∣∣∣∣∣∣
1

1
1

 L1↔ L2

 1 7 0
0 −8 4
0 24 −10

∣∣∣∣∣∣∣
1

1 −2
3 1

 L2−2L1
L3 +3L1

 1 7 0
0 −8 4

0 0 2

∣∣∣∣∣∣∣
1

1 −2
3 −3 1


L3 +3L2
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(La matrice est échelonnée et possède 3 pivots : on sait que A est inversible) 1 7 0
0 −8 0
0 0 2

∣∣∣∣∣∣
1

−5 4 −2
3 −3 1

 L2−2L3

 1 0 0
0 −8 0
0 0 2

∣∣∣∣∣∣
−35

8
9
2
−7

4
−5 4 −2
3 −3 1

 L1 +
7
8

L2



1 0 0

0 1 0

0 0 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

−35
8

9
2
−7

4

5
8
−1

2
1
4

3
2
−3

2
1
2


−1
8

L2

1
2

L3

Ainsi, A est inversible et A−1 =
1
8

 −35 36 −14
5 −4 2

12 −12 4

.

Exemple 16. Vérifier si A =


1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1

 est inversible et si c’est le cas, calculer A−1.


1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1

∣∣∣∣∣∣∣∣∣
1

1
1

1




1 1 1 1
0 0 0 0
0 0 0 0
0 0 0 0

∣∣∣∣∣∣∣∣∣
1
−1 1
−1 1
−1 1

 L2−L1
L3−L1
L4−L1

La matrice est échelonnée mais il n’y a qu’un pivot et non quatre. Donc A n’est pas
inversible.

Théorème 21.9 – Inversibilité des matrices diagonales

Soit D = diag(α1, · · · ,αn) avec α1, · · · ,αn ∈K. Alors D ∈ GLn(K) si et seulement si α1, · · · ,αn sont tous
non nuls. De plus, lorsque c’est le cas :

D−1 =


α
−1
1 0

α
−1
2

. . .

0 α
−1
n



Heuristique de la preuve. Si les réels α1, · · · ,αn sont tous non nuls, on vérifie par un calcul direct que la matrice

diag

(
1

α1
,

1
α2

, · · · , 1
αn

)
est bien l’inverse de D.
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Réciproquement, si un des coefficients α1, · · · ,αn est nul, on montrera grâce au déterminant dans un chapitre
ultérieur que D n’est pas inversible.

Théorème 21.10 – Inversibilité de matrices triangulaires

Soit T ∈ T +
n (K), qu’on écrit sous la forme

T =


β1 ∗

β2
. . .

0 βn

 avec β1, · · · ,βn ∈K

Alors T ∈ GLn(K) si et seulement si les réels β1, · · · ,βn sont tous non nuls et dans ce cas, T−1 est de la
forme

T−1 =


β
−1
1 ∗′

β
−1
2

. . .

0 β
−1
n


Ce théorème s’adapte aussi aux matrices triangulaires inférieures.

Les termes ∗′ dans T−1 ne sont pas forcément les mêmes que les termes ∗ dans T .

Heuristique de la preuve. Si les réels β1, · · · ,βn sont tous non nuls, alors la matrice T est déjà échelonnée et
possède n pivots β1, · · · ,βn. Elle est donc inversible. En réalisant l’algorithme pour inverser T , i.e. passer de
(T | In) à (In | T−1) par des opérations élémentaires, on constate que la matrice T−1 obtenue doit vérifier la forme
ci-dessus.
Réciproquement, si un des coefficients β1, · · · ,βn est nul, on montrera grâce au déterminant dans un chapitre
ultérieur que T n’est pas inversible.
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7 Méthodes pour les exercices

Méthode

Pour résoudre un système linéaire, on peut :

• Si le système est de petite taille (2x2 par exemple) rester en écriture “système” et procéder par
substitution ou combinaison.

• Si le système est de grande taille, passer en écriture matricielle et appliquer l’algorithme du pivot au
préalable.

Méthode

Pour vérifier si une matrice A ∈Mn(R) est inversible ou non et calculer A−1 (si A est inversible), on peut :

• Chercher une matrice B ∈Mn(R) telle que AB = In ou BA = In.

• Partir d’une matrice augmentée (A | In) et échelonner A par des opérations sur les lignes.

– Si après échelonnement, A ne possède pas n pivots, alors A n’est pas inversible.

– Si après échelonnement, A possède n pivots, alors A est inversible : on se ramène à la forme(
In | A′

)
, et A′ est alors la matrice inverse de A.

On verra d’autres méthodes pour vérifier plus rapidement si une matrice est inversible ou non, mais en général,
elles ne permettent pas de calculer A−1.
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